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Abstract Wilshire–Scharning have recently developed a

new methodology that has been demonstrated to deliver

accurate longer term creep life predictions, and so offers

the prospect of cost-effective acquisition of long-term

creep design data. This methodology differs from existing

approaches to creep life prediction by normalising the

applied stress through the appropriate tensile strength. This

article develops a generalisation of this Wilshire–Schar-

ning model that has the potential to increase the predictive

accuracy of this methodology—which will be so essential

if it is to be adopted as a way of economising on the

acquisition of creep design data. When applied to 1Cr–

1Mo–0.25 V steel, it was found that this generalisation

reduced the average error in prediction from 2.5 under the

Wilshire–Scharning specification to 1.8 years when

extrapolating from 5,000 out to over 100,000 h. Further,

over this time scale the generalised model produces a mean

absolute percentage error of 28%. This compares to 47%

obtained using the traditional 4H projection technique and

26% using a modification of this methodology as recently

proposed by Evans.

Introduction

Large-scale components and structures for power plants are

usually designed on the basis that creep failure should not

occur during planned lives of around 30 years. Such

decisions are generally based on the allowable tensile creep

strengths. In most cases there is no derivation of statistical

confidence intervals so that these strengths are often

determined as 80% of the minimum stress causing rupture

in 100,000 h. Because of this extended time frame the

creation of a comprehensive database for any new power

plant steel then represents a very expensive and protracted

task.

The large timescales involved in such testing only

account for part of the testing cost. In response to the well-

known batch-to-batch scatter present even in steels that are

within specified compositional limits, the international

standard ISO 6303 requires the completion of tests lasting

up to 30,000 h over the relevant temperature ranges for five

melts of each grade [1, 2]. In addition, for several newly

developed steels, the allowable strengths have been pro-

gressively reduced as measurements from longer term tests

have become available [3–5]. These and other studies have

emphasised the limitations of existing methods for data

extrapolation from short-term tests.

These and other uncertainties have then justified the

completion of protracted programmes covering stress–

temperature conditions giving creep lives up to 100,000 h

or more for multiple batches of many power plant steels

[2]. Against this background, Wilshire and Scharning [6–9]

have recently developed a new methodology offering the

prospect of cost effective acquisition of long-term creep

design data. Using a variety of different materials, these

authors have demonstrated that by normalising the applied

stress through the appropriate tensile strength, the meth-

odology is capable of accurately predicting, from relatively

short-term data, the minimum creep rates, the times to

various strains and the creep lives for stress–temperature

conditions causing failure in 100,000 h and more. Evans

[10] has also recently demonstrated the predictive superi-

ority of this methodology over existing extrapolation
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procedures using 1Cr–1Mo–0.25 V steel as a test-bed

material. These authors have also demonstrated that such

normalisation results in a substantial reduction in the batch-

to-batch scatter.

This article provides a generalisation of this methodol-

ogy that has the potential to further improve the accuracy

of creep life predictions obtainable under this new meth-

odology. This is an important objective, because if the

methodology of normalising the stress is to be adopted as a

way of economising on the acquisition of long-term creep

design data, demonstrative accuracy over a wide range of

materials is an essential prerequisite. The proposed gen-

eralisation is then applied to data on 1Cr–1Mo–0.25 V

steel and relative predictive accuracies quantified.

To meet this objective, this article is structured as follows.

The following section describes the data set used for illus-

trating the use of the generalised model. This is followed by

a section that outlines a generalisation of the Wilshire–

Scharning model and which also looks at issues related to

how such a generalised model is estimated and then used to

obtain long-term creep life predictions. The next section

then describes how predictive accuracy can be sensibly

measured and the applications section shows the estimated

parameters of the generalised model, together with some

lifetime predictions. Predictions from the Wilshire–Schar-

ning model, variations of the H projection technique and the

generalised models are then compared. A concluding section

will then outline some proposals for future work.

The data

For illustrative purposes, this article features forged 1Cr–

1Mo–0.25 V steel for turbine rotors and shafts. For mul-

tiple batches of this bainitic product, both the creep and

creep fracture properties have been documented compre-

hensively by the National Institute for Materials Science

(NIMS), Japan [11]. NIMS creep data sheet No. 9B

includes information on nine batches of as tempered 1Cr–

1Mo–0.25 V steel. Table 1 gives the chemical composition

of each of these batches. Specimens for the tensile and

creep rupture tests were taken radially from the ring-shaped

samples which were removed from the turbine rotors. Each

test specimen had a diameter of 10 mm with a gauge length

of 50 mm.

These specimens were tested at constant load (s) over a

wide range of conditions: 333–47 MPa and 723–923 K. In

addition to minimum creep rate ( _em) and time to failure (tF)

measurements, listings were also given of the times to attain

various strains (te) at 0.005, 0.01, 0.02 and 0.05 over this

range of test conditions. Also reported were the values of

the 0.2% proof stress (sY) and the ultimate tensile strength

(sTS) determined from high strain rate (*10-3 s-1) tensile

tests carried out at the creep temperatures for each batch of

steel investigated. Using this freely available NIMS docu-

ment, the accuracy with which 100,000 h strengths can be

estimated by extrapolation of short-term results can be

assessed against reliable long-term measurements.

Proposed generalisation of the Wilshire–Scharning

model

The Wilshire–Scharning model

Wilshire and Scharning [6–9] have recently suggested that

the applied stress should be normalised through measured

values of ultimate tensile strength so that data sets can be

considered over the complete stress range for s/sTS = 1 to

0. Valid relationships devised to quantify creep rupture

measurements must then make it evident not only that

tF ? 0 as s/sTS ? 1, but also that tF ? ? as s/sTS ? 0.

Whilst many formulations of this are possible, Wilshire and

Scharning opted for the following functional form

Table 1 Composition and heat treatment of 1Cr–1Mo–0.25 V steel

Batch code

Requirements

Chemical composition (mass %)

C Si Mn P S Ni Cr Mo Cu V Al N

0.25–0.35 0.15–0.35 B1.0 B0.015 B0.018 B0.75 0.9–1.5 1.0–1.05 – 0.2–0.3 – –

VaA 0.28 0.20 0.72 0.015 0.012 0.32 1.02 1.12 0.20 0.27 0.002 0.0075

VaB 0.28 0.18 0.75 0.012 0.009 0.32 1.00 1.25 0.14 0.26 0.002 0.009

VaC 0.29 0.20 0.75 0.010 0.009 0.34 1.00 1.25 0.14 0.26 \0.002 0.0075

VaD 0.3 0.28 0.72 0.014 0.006 0.35 0.93 1.22 0.16 0.21 0.002 0.0093

VaE 0.3 0.26 0.79 0.016 0.015 0.32 1.03 1.13 0.19 0.23 \0.002 0.0085

VaG 0.29 0.26 0.76 0.009 0.007 0.45 1.12 1.18 0.07 0.23 0.002 0.0103

VaH 0.29 0.26 0.77 0.009 0.007 0.46 1.12 1.20 0.08 0.23 \0.002 0.0095

VaJ 0.29 0.21 0.66 0.010 0.008 0.51 1.07 1.29 0.06 0.23 0.002 0.0097

VaR 0.3 0.27 0.70 0.012 0.012 0.44 1.10 1.35 0.11 0.27 0.002 0.0082
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s=sTS ¼ exp �k1 tF exp �Q�
C
=RT

� �h iun o
; ð1aÞ

where Q�c is the activation energy for lattice self-diffusion

in the alloy steel matrixes, R the universal gas constant

(8.314 J mol-1 K-1), T the absolute temperature and k1

and u are parameters that will require estimation. In Eq. 1a,

s/sTS varies from 1 to 0 in an S-shaped fashion as

tF exp �Q�
C
=RT

� �
varies from 0 to ?. The precise shape of

this sigmoidal function then depends on the value of u.

A generalisation of the Wilshire–Scharning model

A clue as to the best way to generalise this sigmoidal

function comes from realising that the functional form of

Eq. 1a is in fact the same as that for the cumulative density

function (CDF) of a variable that follows a Weibull dis-

tribution. Just as s/sTS must lie in the 0–1 range, so too

must the cumulative probability, p. If a variable x follows a

Weibull distribution, then its CDF is given by

p ¼ exp½�ðk0xÞu�: ð1bÞ

Now if the variable x is given by

x ¼ tF exp �Q�
C
=RT

� �
ð1cÞ

then Eqs. 1a and 1b are identical with k1 = (k0)u and with

p being synonymous with s/sTS.

This Weibull CDF is in turn a special case of the gen-

eralised F distribution [12] and so it is entirely sensible to

consider this as the logical generalisation of the Wilshire–

Scharning model. The CDF for the generalised F distri-

bution is

p ¼ Iðs; m1; m2Þ with s ¼ 1þ m1=m2ewð Þ½ ��1; ð2aÞ

where I() is the incomplete beta integral that depends upon

the values of s, m1 and m2 and it can be calculated using the

results of Abramowitz and Stegan [13]. m1 and m2 are two

additional parameters that in part determine the shape of

this sigmoidal function and

w ¼ 1

rd
ln½x� � l

rd
with d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

m1 þ m2

r
: ð2bÞ

In order to see how this relates to the original Wilshire–

Scharning model considers some special cases. When

m2 = ?, the model simplifies to the generalised gamma

distribution. The CDF for the generalised gamma

distribution is

p ¼ Qðm1; sÞ with s ¼ m1ew=d; ð3aÞ

where Q() is the incomplete gamma integral that can also

be calculated using the results of Abramowitz and Stegan

[13], and

w ¼ 1

rd
ln½x� � l

rd
with d ¼ ffiffiffiffiffiffi

m1

p
: ð3bÞ

Then when m1 = 1 with m2 = ?, Eqs. 3a and 3b collapse

to

p ¼ exp½�ew� where w ¼ 1

r
ln½x� � l

r
: ð4Þ

A proof of these simplifications can be found in Prentice

[14]. Equation 4 is now identical to the Wilshire–Scharning

model given by Eq. 1a with p = s/sTS, u = 1/r and k1 ¼
ðe�lÞu:With two additional parameters in m1 and m2, Eqs. 2

allows for more flexibility in describing the functional

relationship between s/sTS and x. This is illustrated in

Fig. 1. The solid curve shows the shape of the Wilshire–

Scharning model when l = 0 and r = 1 (i.e. when k1 = 1

and u = 1). The other two curves then illustrate the extra

variation in shape that the generalised sigmoidal allows as a

results of having the two additional parameters m1 and m2.

Variations in r will result in further changes in the shape of

these sigmoidal curves. l is simply a scaling parameter.

The Wilshire–Scharning model was first published in a

paper studying polycrystalline copper [6]. In this article,

the authors found that the parameters of Eq. 1a differed at

stresses above and below the yield stress. Rather than

attributing this to a mechanism change, they provided

evidence to suggest that this was attributable to grain

deformation as the movement of dislocations becomes

progressively less important as deformation is increasingly

confined to grain boundary zones as stress falls below the

yield stress. Since then, Wilshire and Scharning have found

similar ‘kinks’ in 1Cr–1Mo–0.25 V and 9–12% chromium

steels [7, 8] and some Al alloys [9].

As demonstrated by Evans [10], one way to formalise

such a kink is through the use of a spline function. These are

continuous functions that allow for such differing parameter

values. Using such a spline function, a kink can be incor-

porated into the Wishire–Scharning model as follows

s� ¼ � lnðk1Þ þ ðuÞ lnðxÞ þ a½lnðxÞ � x�0�D; ð5Þ

where s* = ln(-ln(s/sTS)), x*
0 is the value for ln(x) at

which u and k1 change and D = 0 when [ln(x) - x0
*] B 0

and D = 1 otherwise. Within the framework, x0
* and a

should be seen as further parameters whose value should be

determined from the data. So before the change when

D = 0

s� ¼ � lnðk1Þ þ ðuÞ lnðxÞ

but after the change when D = 1

s� ¼ f� lnðk1Þ � ax�0g þ ½uþ a� lnðxÞ:

This kink can also be introduced into the generalised

model by rewriting Eq. 2b as
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w ¼ 1

rd
ln½x� � l

rd
þ a½lnðxÞ � x�0�D; ð6Þ

where w = s* and d = 1 when m1 = 1 with m2 = ?,

making Eqs. 5 and 6 equivalent in this special case of the

generalised model (with 1/r = u and l/r = ln(k1)).

The generalised model expressed in Excel

Although at first sight this generalisation looks rather

complicated to implement, due to the lack of closed form

expressions, it is in fact very straightforward to apply in

Excel. Figure 2 is a screen caption illustrating such an

implementation for a single observation on x. Cells B7:D7

contain the results for one specimen tested on the NIMS

programme. Cell G7 works out the temperature compen-

sated failure time, x, and its natural log is calculated in cell

H7. Cells I7:K7 define and calculate the variables w and s

in Eqs. 2a and 2b. Then in cell L7 the predicted value for

s/sTS is given. The Excel function BETADIST gives the

CDF of the beta distribution as a function of s, which is in

fact the incomplete beta integral I() of Eq. 2a. These values

are all worked out for the parameter values shown in cells

E3:L3.

Notice that in this illustration, m1 = 1 and m2 is very

large so that the resulting predicted value for s/sTS is that

which would be given by the Wilshire–Scharning model

0
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Fig. 1 The generalised

sigmoidal traced out for various

values of m1 and m2 with l = 0

and r = 1 in Eqs. 2

Fig. 2 Excel implementation of

the generalised model given by

Eqs. 2a and 6
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with k1 = 13.26 and u = 0.11 when ln(x) is B-27 and

with k1 = 260 and u = 0.21 when ln(x) is [-27. Then in

cell N7 the squared difference between the actual norma-

lised stress and that predicted by the model is worked out.

This so-called squared residual can be used to determine

the values given for the parameters of the model shown

in cells E3:L3 in the way described in the following

section.

Estimating the parameters of the generalised model

A squared residual can be worked out for each and every

test condition i (of which there are n1), and the sum of these

residuals can then be calculated as

RSS ¼
Xn1

i¼1

ðs=sTSÞi � ðs=sTSÞpi
� �2

; ð7Þ

where (s/sTS)p is the models prediction of s/sTS. It then

makes sense to chose parameter values that minimise this

so-called residual sum of squares, because the values for

s/sTS predicted by the model are as close as possible to the

experimental values.

In this research article, a two-step optimisation proce-

dure is used. First, a value for m1 and m2 is selected. Then

values for l and r are then chosen so as to minimise Eq. 7

for these given values of m1 and m2. This is a nonlinear

least squares optimisation procedure that can be easily

carried out in Excel using the Solver option or using well-

known algorithms such as those documented in Brendt

et al. [15]. This process is repeated for a variety of values

for m1 and m2, giving a variety of different minimised RSS.

The optimised values for l, r, m1 and m2 correspond to

those which give the smallest of these minimised RSS.

Under this two-stage procedure only l and r will have a

standard error associated with them.

Then provided that the individual (s=sTSÞi � ðs=sTSÞpi is

normally distributed, those values for m1 and m2 that are

supported by the data at the 5% significance level will have

a value of \3.81 for the following test statistic

v2
1;j ¼ n1 RSSj �minðRSSÞ

� �
: ð8Þ

In Eq. 8, RSSj is the residual sum of squares associated

with the jth values for m1 and m2, min(RSS) is the smallest

RSS over all j values for m1 and m2, and n1 is the sample

size used to estimate the parameters l, r, m1 and m2.

Obtaining failure time predictions from the generalised

model

Because the generalised model has no closed form

expression, except for a few special cases such as the

Wilshire–Scharning model, failure time predictions require

a numerical solution to the equation

s=sTS ¼ Iðs;m1; m2Þ: ð9Þ

In Eq. 9, s/sTS is the actual normalised stress

corresponding to a particular test condition. A value for

tF and thus s, for given values of m1 and m2, that sets

Iðs;m1; m2Þ equal to this actual normalised stress can then

be found numerically. This is very straightforward to do in

Excel using its Goal seek function.

Measuring predictive accuracy

The following is a proposed acid test of extrapolation

that any creep life prediction model can be subjected to.

First, a long-term creep data set should be split into two

parts (A and B) using an arbitrary split defined in terms

of a short-term time to failure. Data set A will then be

made up of i = 1, n1 specimens, whilst data set B will

made up of i = 1, n2 specimens. The parameters of each

model should then be chosen so that the model best fits

the data in part A—i.e. minimises the residual sum of

squares. The estimated models should then be used to

predict the times at which the specimens failed in data

set B. It is proposed that the accuracy of these predic-

tions be assessed using an actual versus prediction

regression of the form

tFi
¼ â0 þ â1 t̂Fi

þ ei i ¼ 1; n2; ð10aÞ

where tFi
and t̂Fi

are the actual and predicted times to

failure under test condition i of the creep data set B. â0 and

â1 are the least squares estimates of the intercept and slope,

respectively, of the best-fit line through the tFi
� t̂Fi

pairings. A perfect model would then correspond to

â0 ¼ 0; â1 ¼ 1 and ei = 0 for all i. Interestingly, Theil

[16] has related Eq. 10a to a more familiar measure of

predictive accuracy—the mean square error (MSE)

MSE ¼ 1

n2

Xn2

i¼1

tFi � t̂Fi½ �2; ð10bÞ

where the sum is over all n2 specimens making up the creep

data set B. Theil [16] has shown that the MSE can be

decomposed into the following three parts

MSE ¼ ½�tF � �̂tF�2 þ ðâ1 � 1Þ2S2
t̂F

n o
þ S2

e ; ð10cÞ

where S2
t̂F

is the variance of the failure time predictions, S2
e

is the variance of e in Eq. 10a and �tF the average failure

time over the n2 tests. Further, when â1 ¼ 1; ½�tF � �̂tF� ¼ â0:

Thus UM ¼ ½�tF � �̂tF�2=MSE is the proportion of the MSE

due to a mean prediction error. But when â1 6¼ 1 the
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average prediction error depends on both â0 and â1 through

the expression ½�tF � �̂tF� ¼ â0 þ ðâ1 � 1Þ�̂tF: Further, UR =

UR ¼ ðâ1 � 1Þ2S2
t̂F

n o.
MSE is the proportion of the MSE

due to the slope coefficient in Eq. 10a differing from 1.

UM and UR therefore clearly represent systematic errors

and large values for these two terms are a strong indication

that the creep life prediction model is misspecified in

some way. Finally, UD ¼ S2
e=MSE is the proportion of the

MSE which is unexplained by the mean or slope error and

can be interpreted as being random in nature. The MSE

error is therefore made of random and systematic predic-

tion errors and the best model will have a small systematic

component.

Application of the generalised model

to 1Cr–1Mo–0.25 V steel

Using the terminology of the section ‘Measuring predictive

accuracy’, Part A of the NIMS data set described in the

section ‘The data’ contains all those specimens that failed

at or before 5,000 h with part B being made up of all those

specimens failing beyond 5,000 h. Data set A is therefore

made up of i = 1, n1 = 119 specimens, whilst data set B

was made up of i = 1, n2 = 110 specimens. Figure 3

shows the results of estimating the generalised model for

various values of m1 and m2 using only the information

contained in data set A. In these figures the values for m1
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Fig. 3 Residual sum of squares

plotted against various values

for m�1 and m�2 for the

generalised model with (a) a

kink included as given by

Eqs. 2a and 6 and (b) no kink

included as given by Eqs. 2a

and 2b
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and m2 have been transformed along the lines suggested by

Prentice [14] using

m�1 ¼ 2ðm1 þ m2Þ�1
and

m�2 ¼ ðm�1
1 � m�1

2 Þðm�1
1 þ m�1

2 Þ
�1=2

so that axis scales do not range from 0 to infinity. Within

this simple transformation, the Wilshire–Scharning model

corresponds to m�1 ¼ 1 and m�2 ¼ 0: In Fig. 3a the

minimised residual sum of squares of the generalised

model with a kink (i.e. Eqs. 2a and 6) obtained at various

values for m�1 and m�2 is shown. As can be seen the best

values for m�1 and m�2 are 2 and 0, respectively. When

m�2 ¼ 0; the likelihood ratio statistic given by Eq. 8 rejects

the Wilshire–Scharning model as a valid restriction at the

5% significance level (v2
1;j ¼ 6:52). Except at very small

and large values for m�1, values for m�2 have little effect on

the residual sum of squares.

A similar picture emerges in Fig. 3b where the mini-

mised residual sum of squares of the generalised model

with no kink (i.e. Eqs. 2a and 2b) obtained at various

values for m�1 and m�2 is shown. As can be seen the best

values for m�1 and m�2 are 4 and 0, respectively. When

m�2 ¼ 0; the likelihood ratio statistic given by Eq. 8 rejects

the values for m�1\3:4 as a valid restriction at the 5%

significance level (v2
1;j ¼ 118:86). Thus the Wilshire–

Scharning model with no kink is also not supported by the

experimental data. Except at very small values for m�1;
values for m�2 have little effect on the residual sum of

squares.

Table 2 shows the nonlinear least squares estimates for

the generalised model (with and without a kink) corre-

sponding to the optimal values for m1 and m2 shown in

Fig. 3. These parameters were estimated using only data

with failure times \5,000 h. Clearly, the residual sum of

squares is smallest for the generalised model with a kink,

but for both models all the parameters are statistically

significant at the 5% significance level. When a kink is

included in the model, the break occurs at a value of -27.6

for x ¼ tF exp �Q�
C
=RT

� �
: Above the kink the value for 1/r

increases by 0.093 units compared to its below the kink

value of 0.154. These two models, together with the Wil-

shire–Scharning model, are visualised in Fig. 4. All three

models fit the data well—including the failure times above

5,000 h that the models have not ‘seen’. These three

models appear to give similar fits to the data, except around

the kink point of x = -27 and at the extreme values for x.

It is therefore arguable as to whether the extra complexity

of introducing a kink into the model is required.

Table 2 Values for the parameters of Eqs. 2a and 2b and 2a and 6

estimated from specimen data that failed before tF = 5,000 h using

nonlinear least squares

Generalised models

Parameter Estimate (kink) Estimate (no kink)

*l/r -3.463 [-21.9] -9.236 [-77.2]

*1/r 0.154 [29.6] 0.405 [87.5]

*a 0.093 [14.5] n/a

*x�0 -27.616 [-132.0] n/a

k1 0.25 [-] 0.053 [-]

k2 ? [-] 0.947 [-]

RSS 0.0266 0.0409

* Indicates a variable that is statistically significant at the 5% level.

Student t-values are in parenthesis. RSS, the residual sum of squares,

- indicates no standard error associated with variable. n/a indicates

that the corresponding variable is not part of the model
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Fig. 5 Actual versus prediction plot for 1Cr–1Mo–0.25 V steel using the (a) generalised model with no kink given by Eqs. 2a and 2b, (b)

Wilshire–Scharning model given by Eq. 4 (c) generalised model with a kink given by Eqs. 2a and 6
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In order to assess the accuracy of the Wilshire–Schar-

ning model relative to the generalised version (with and

without a kink), Fig. 5 shows actual versus prediction plots

for each model. The predictions shown in these figures

were obtained using the median sTS (over all batches) at

each temperature, rather than the actual sTS associated with

each batch at each temperature. The top half of each of

these figures shows the accuracies of the interpolations

made by each model (each model was estimated from

failure times \5,000 h). Each model gives a very similar

performance with an MSE of around 1,0002. Also, for each

model the random component of this MSE is around 50%,

with most of the remaining systematic bias composing

from the fact that the best-fit line on these plots has a slope

\1. There is therefore some divergence from the optimum

outcome given by the 45� line.

However, there is a big difference in their extrapolative

performances, as shown by the bottom graphs in Fig. 5.

The generalised model with no kink performed the best

with a MSE of 15,5192. On average this model was in error

by some 15,519 h or 1.8 years. Nearly 92% of this error

was random in nature so that no real evidence of systematic

error is present. The generalised model with a kink per-

formed very similarly. However, the Wilshire–Scharning

model gave an MSE of 21,1412. On average this model was

in error by some 21,141 h or 2.5 years. The systematic

component of this error was also higher than in the gen-

eralised model at some 18%.

It is also interesting to see how all these predictions look

when plotted against the test stress, as in Fig. 6. In Fig. 6a,

predictions from the generalised model with no kink are

plotted together with the Wilshire–Scharning predictions.

Where the Wilshire–Scharning longer term predictions are

weakest (i.e. at 823 and 773 K), the predictions from the

generalised model look better. It can also be noted that at

the higher temperatures, the two models produce very

different prediction profiles at the lower stresses, with the

Wilshire–Scharning model giving much more optimistic

life times at these stresses. A similar picture emerges in

Fig. 6b although now the differences in the predictions

produced by the Wilshire–Scharning model and its gener-

alisation with a kink are less pronounced.

Finally, it is informative to compare the failure time

predictions obtained from the generalised model with no

kink with predictions that have been made for this material

using other modern extrapolation techniques recently

published in the literature. In a recently published paper,

Evans [17] applied the 4H projection technique and a

Monkman–Grant representation of this technique to a data

set on 1Cr–1Mo–0.25 V steel. In this representation, creep

rates at low strains were used to predict minimum creep

rates (a relation which is implied by the 4H methodology),

Actual = 0.6803Predicted + 346.04
R² = 77.51%
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Fig. 5 continued
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which in turn are used to predict failure times using the

Monkman–Grant relation. These methods were applied to a

much smaller data set than the NIMS data set used in this

article, with models being estimated from test results

varying between 14 and 4,500 h and extrapolations then

being made out to 31,000 h.

Within this reduced timescale, the 4H projection tech-

nique produced a mean absolute percentage error (MAPE)

in extrapolation of around 47%, with UM = 31%,

UR = 62% and UD = 7%. Using strain rates and 0.5%

strain to predict failure times, the MAPE = 26%, with

UM = 1%, UR = 46% and UD = 53%. Bearing in mind

that the above-generalised model with no kink was used to

extrapolated out to over 100,000 h (not 31,000 h) this

model had a MAPE = 28% with UM = 7%, UR = 1%

and UD = 92%. Thus the generalised model with no kink

produces a similar MAPE to the Monkman–Grant repre-

sentation of the 4H technique—but over a much longer

time sale—but this model has a much lower systematic

component to these prediction errors.

Conclusions

A generalisation of the Wilshire–Scharning methodology

has been put forward that has the potential to increase the

predictive accuracy of the methodology—a property that

will be so essential if it is to be adopted as a way of

economising on the acquisition of long-term creep design

data. A demonstration as to how this model can be esti-

mated within Excel was also presented. When applied to

1Cr–1Mo–0.25 V steel it was found that the best
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Fig. 6 Multi batch stress

rupture data for 1Cr–1Mo–

0.25 V steel at 723–948 K

compared with predicted curves

using the generalised model

with (a) no kink of Eqs. 2a and

2b and the Wilshire–Scharning

model of Eq. 4 and (b) a kink of

Eqs. 2a and 6 and the Wilshire–

Scharning model of Eq. 4
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predictions of longer term times to failure were obtained

using the generalised model with no kink. On average this

model was in error by some 15,519 h or 1.8 years, but just

as importantly nearly 92% of this error was random in

nature. This generalisation was shown to give much more

pessimistic lifetime predictions at lower stresses compared

to the restriction implied by the Wilshire–Scharning model.

Further, the generalised model with no kink produces a

similar MAPE to the Monkman–Grant representation of the

4H techniques—but over a much longer time sale—but has

a much smaller MAPE compared to the 4H technique. Just

as important is the result that this model has a much lower

systematic component to these prediction errors.

Areas for future work included comparing the Wil-

shire—Scharning methodology with the more traditional

parametric models currently available within the literature

using materials that will be required to raise efficiency and

reduce fuel costs associated with future power generation

(i.e. the austenitic steels such as stainless steel). The gen-

eralisation given above can also be further amended by

allowing r to vary with test conditions (i.e. essentially

allowing creep variability to be a function of stress and

temperature) and by allowing Q�c to be estimated from the

data and modelled, perhaps, using a kinked function similar

to one used for the stress relation.
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